Report \#: 0239-0107-05 Specimen \#: See Section 5.0 Report Expiration Date: 4/29/10

Page 1 of 6

MANUFACTURER INFORMATION

1.0 NAME OF APPLICANT: Transparent Protection System, Inc. 6643 42 ${ }^{\text {nd }}$ Terrace North West Palm Beach, FL 33407 888.447.8320
2.0 CONTACT PERSON: Scott Kuntz
3.0 HTL TEST NOTIFICATION \#: N/A
4.0 HTL LAB CERTIFICATION: Miami-Dade County (03-0507.09); Florida Building Code (TST1527); AAMA; WDMA; Keystone Certifications
5.0 REPORT INFORMATION:

Specimen \#	Test Date
7	$1 / 14-17 / 05$
8	$1 / 25 / 05$
9	$1 / 26 / 05$
10	$1 / 18 / 05$
11	$1 / 18 / 05$
12	$1 / 19 / 05$

PRODUCT IDENTIFICATION

6.0 Product Type: Polycarbonate Hurricane Shutter Panels
7.0 Model Number: Clear Guard Polycarbonate Storm Panels
8.0 Performance Class and Overall Size:

Specimen \#	Performance Class	Overall Size
7	$+/-104 \mathrm{psf}$	
8		$41^{\prime \prime} \times 45^{\prime \prime}$
9		
10	$+/-120 \mathrm{psf}$	
11		
12		

9.0 Configuration: See Transparent Protection System, Inc. Drawing \#03-155-1343b, sheet 1 for an elevation of this unit.
10.0 Drawing: This test report is incomplete without the attached Transparent Protection System, Inc. Drawing \#03-155-1343b, sheets 1 thru 3 each bearing the raised seal of Hurricane Test Laboratory, LLC.
11.0 Source of Sample: Sample provided by Transparent Protection System, Inc.

PRODUCT DESCRIPTION

12.0 DETAILED DESCRIPTION:

12.1 Panel: Each sample tested as part of this test program consisted of three (3) Storm Panels that were interlocked together. Each panel was fabricated from an extruded Thermoplastic Polycarbonate Resin plastic sheet having overall cross sectipndy proqedties, as listed in the following table:

4/29/05
Vinu J. Abraham, P.E. FL Reg. \# 53820

No. 53820

STATE OF
Poridr
NAL
NaL

Hurricane Test Laboratory, llC
Testing And Evaluation Solutions
www.htitest.com
Report \#: 0239-0 107-05
Specimen \#: See Section 5.0
Report Expiration Date: 4/29/10
Page 2 of 6

Description	Item \#	Overall Cross Section
Storm Panel	1	$2.000^{\prime \prime}(\mathrm{h}) \times 15.250^{\prime \prime}(\mathrm{w}) \times 0.100^{\prime \prime}(\mathrm{t})$

The following procedures (typical) were utilized when assembling the shutter sample: Storm Panel Attachment: Each Storm Panel was either direct mounted to the opening as listed in the installation section of this test report or was in-directly mounted to the opening using some or all of the accessories listed in Section 12.2 of this report. Each Storm Panel is mechanically fastened to the mounting accessories using $1 / 4-20 \times 3 / 4$ " studs and a keyhole washer (Item \#8) and a washered wingnut (Item \#9) located in each valley of the shutter.
12.2 Storm Panel Mounting Accessories: Some or all of the following (typical) accessories were utilized in the testing of the Storm Panel samples:

Description	Item \#	Overall Cross Section	Aluminum Alloy
"H" Header	10	$3.813^{\prime \prime} \times 2.250^{\prime \prime} \times 0.067^{\prime \prime}$	$6063-\mathrm{T} 6$
Stud Angle	3	$2.000^{\prime \prime} \times 2.000^{\prime \prime} \times 0.125^{\prime \prime}$	$6063-\mathrm{T} 6$
Build Out " $\mathrm{F}^{\prime \prime}$ Track	5	$1.660^{\prime \prime} \times 3.375^{\prime \prime} \times 0.090^{\prime \prime}$	$6063-\mathrm{T} 6$
Build Out Stud Angle	3	$2.000^{\prime \prime} \times 2.000^{\prime \prime} \times 0.125^{\prime \prime}$	$6063-\mathrm{T} 6$
	7	$2.000^{\prime \prime} \times 5.000^{\prime \prime} \times 0.125^{\prime \prime}$	$6063-\mathrm{T} 6$
Assembly	6	$1.675^{\prime \prime} \times 0.380^{\prime \prime} \times 0.095^{\prime \prime}$	$6063-\mathrm{T} 6$
" $\mathrm{F}^{\prime \prime}$ Track	4	$2.000^{\prime \prime} \times 2.000^{\prime \prime} \times 0.092^{\prime \prime}$	$6063-\mathrm{T} 6$
Reverse " $\mathrm{F}^{\prime \prime}$ Angle			

Mounting Accessory Attachment: See the installation section of this report for details.

PRODUCT INSTALLATION

13.0 The following section of this report details how each specimen was installed into the provided openings:

Mounting Style	Substrate	Anchor Type	Anchor Schedule	Specimen \#
"H" Header	Wood	1/4" x 2-12" Lag Screw (2- 3/32" min. embed.)	$2^{\prime \prime}$ from each end and $10^{\prime \prime}$ on center thereafter - 5 fasteners total.	7
		$5 / 8^{\prime \prime} \times 1 / 2^{\prime \prime}$ wood bushings		8
	CMU	$1 / 4^{\prime \prime} \times 2^{\prime \prime}$ ELCO Male Panelmate (1-1/4" min. embed.)		9
Stud Angle	CMU	$\begin{aligned} & 1 / 4^{\prime \prime} \times 2^{\prime \prime} \text { ELCO Tapcon (1- } \\ & 1 / 4^{\prime \prime} \text { min. embed.) } \end{aligned}$	$2^{\prime \prime}$ from each end and $10^{\prime \prime}$ on center thereafter - 5 fasteners total.	7
	CMU	$3 / 4^{\prime \prime} \times 1 / 2^{\prime \prime}$ lead anchors		11
"F" Track	CMU	$3 / 4^{\prime \prime} \times 1 / 2^{\prime \prime}$ lead anchors	$2^{\prime \prime}$ from each end and $10^{\prime \prime}$ on center thereafter - 5 fasteners total.	8
	Wood	$5 / 8^{\prime \prime} \times 1 / 2^{\prime \prime}$ wood bushings		11
Build Out "F" Track	Wood	$\begin{aligned} & 1 / 4^{\prime \prime} \times 2-1 / 2^{\prime \prime} \text { Lag Screw (2- } \\ & 3 / 32^{\prime \prime} \text { min. embed.) } \end{aligned}$	$2^{\prime \prime}$ from each end and $10^{\prime \prime}$ on center thereafter - 5 fasteners total.	10
Build Out Stud Angle Assembly	CMU	$\begin{aligned} & 1 / 4^{\prime \prime} \times 2^{\prime \prime} \text { ELCO Tapcon (1- } \\ & 1 / 4^{\prime \prime} \text { min. embed.) } \end{aligned}$	$2^{\prime \prime}$ from each end and $10^{\prime \prime}$ on center thereafter - 5 fasteners total.	10
Direct	CMU	$1 / 4^{\prime \prime} \times 2^{\prime \prime}$ ELCO Male Panelmate ($1-1 / 4^{\prime \prime} \mathrm{min}$. embed.)	1 " from each end and 6- $1 / 2^{\prime \prime}$ on center whidreafter - 7 fastende sototali $\mathrm{BRAH}_{4 / 1 /} /$	12

Vinu J. Abraham, P.E.
FL Reg. \# 53820

Hurricane Test Laboratory, lle Testing And Evaluation Solutions www.htitest.com

Report \#: 0239-0107-05 Specimen \#: See Section 5.0
Report Expiration Date: 4/29/10
Page 3 of 6

Mounting Style	Substrate	Anchor Type	Anchor Schedule	Specimen \#
Reverse " F " Track	Wood	$1 / 4 " \times 2 "$ ELCO Female Panelmate $\left(1-1 / 4^{\prime \prime}\right.$ min. embed.)	$2^{\prime \prime}$ from each end and $10^{\prime \prime}$ on center thereafter 5 fasteners total.	9 and 12

TEST RESULTS

14.0 SUMMARY OF RESULTS:

Test Method	Test Conditions	Specimen \#
Large Missile Impact Test (ASTM E1886/1996)	--	$7,8,9,10,11$ and 12
Cyclic Load Test (ASTM E1886/1996)	See section 8.0	$7,8,9,10,11$ and 12

15.0 TEST SEQUENCE:

TEST SEQUENCE	Specimen \#
Large Missile Impact Test. Positive Cyclic Load Test Negative Cyclic Load Test.	$7,8,9,10,11$ and 12

16.0 Specimen \#7-\#12- LARGE MISSILE IMPACT TEST:
16.1 IMPACT DATA:

Missile Weight: 9 lb .
Missile Length: 96 in.

Specimen \#	Impact \#	Velocity (ft/s)	X Coordinate (in.)	Y Coordinate (in.)	Instant Deflection (in.)	Permanent Deflection (in.)
	$\mathbf{1}$	49.53	20.50	21.50	7.50	0.63
	$\mathbf{2}$	49.73	11.00	36.50	3.00	0.50
	$\mathbf{3}$	49.93	32.00	7.75	7.00	0.75
$\mathbf{8}$	$\mathbf{1}$	49.60	19.50	20.25	7.50	1.50
	$\mathbf{2}$	49.86	8.50	33.50	6.00	4.50
	$\mathbf{3}$	50.03	28.00	6.00	1.50	0.00
$\mathbf{3}$	$\mathbf{1}$	50.00	20.50	20.00	6.00	5.00
	$\mathbf{2}$	50.10	9.50	34.00	2.00	0.50
	$\mathbf{3}$	50.23	29.00	7.50	2.00	0.75

No. 53820

STATE OF
? ORID
IIMAL

Hurricane Test Laboratory, lle
Testing And Evaluation Solutions
www.htltest.com
Report \#: 0239-0107-05
Specimen \#: See Section 5.0
Report Expiration Date: 4/29/10 Page 4 of 6

Specimen $\#$	Impact $\boldsymbol{\#}$	Velocity (ft/s)	X Coordinate (in.)	Y Coordinate (in.)	Instant Deflection (in.)	Permanent Deflection (in.)
	$\mathbf{1}$	49.68	21.00	20.50	5.50	2.00
	$\mathbf{2}$	49.24	10.00	34.00	2.00	0.75
	$\mathbf{3}$	49.60	34.00	10.00	5.00	1.50
$\mathbf{1 1}$	$\mathbf{1}$	49.60	22.00	20.00	9.50	6.50
	$\mathbf{2}$	49.86	7.00	34.50	1.50	1.00
	$\mathbf{3}$	49.36	32.25	8.50	4.00	3.00
$\mathbf{1 2}$	$\mathbf{1}$	49.86	20.50	21.50	6.00	4.00
	$\mathbf{2}$	49.41	10.50	34.00	3.50	3.00
	$\mathbf{3}$	49.98	31.75	8.00	3.50	2.00

16.2 IMPACT LOCATIONS AND REMARKS:

Each impact test conducted on this specimen was performed in accordance with the requirements of ASTM E1886/1996.
All of the impacts hit their intended targets resulting in the recorded measurements.
Upon completion of the missile impact test, this sample subsequently underwent the cyclic load test as specified by ASTM E1886/E1996.

17.0 CYCLIC LOAD TEST

17.1 CYCLIC TEST PRESSURE:

	CYCLIC TEST PRESSURE	
Specimen \#	$\left(\mathrm{P}_{\mathrm{d}}\right)_{\text {in }}=\mathrm{P}_{\text {max }}$	$\left(\mathrm{P}_{\mathrm{d}}\right)_{\text {out }}=\mathrm{P}_{\text {max }}$
$\mathbf{7 , 8}$ and $\mathbf{9}$	104 psf	104 psf
$\mathbf{1 0 , 1 1}$ and 12	120 psf	120 psf

17.2 CYCLIC LOAD SPECTRUM:

17.2.1 POSITIVE CYCLIC LOAD SPECTRUM:

Specimen \#	\# OF INWARD ACTING CYCLES/STAGE			
	$\mathbf{3 5 0 0}$	$\mathbf{3 0 0}$	$\mathbf{6 0 0}$	$\mathbf{1 0 0}$
$\mathbf{7 , 8}$ and $\mathbf{9}$	$20.8-52$ (psf)	$0-62.4$ (psf)	$20.8-83.2$ (psf)	$\mathbf{2 1 . 2 - 1 0 4}$ (psf)
$\mathbf{1 0 , 1 1}$ and	$24-60$ (psf)	$0-72$ (psf)	$60-96$ (psf)	$36-120$ (psf)

4/29/05
Vinu J. Abraham, P.E. FL Reg. \# 53820

Hurricane Test Laboratory, lle
Testing And Evaluation Solutions
www.htltest.com

Report \#: 0239-0107-05
Specimen \#: See Section 5.0
Report Expiration Date: 4/29/10
Page 5 of 6

17.2.2 NEGATIVE CYCLIC LOAD SPECTRUM:

Specimen \#	\# OF OUTWARD ACTING CYCLES/STAGE			
	$\mathbf{3 5 0 0}$	$\mathbf{3 0 0}$	$\mathbf{6 0 0}$	$\mathbf{1 0 0}$
$\mathbf{7 , 8}$ and 9	$21.2-104$	$20.8-83.2$	$0-62.4$	$20.8-52$
	(psf)	(psf)	(psf)	(psf)
$\mathbf{1 0 , 1 1}$ and	$36-120$	$60-96$	$0-72$	$24-60$
$\mathbf{1 2}$	(psf)	(psf)	(psf)	(psf)

17.3 DEFLECTION DATA:

		POSITIVE LOAD		NEGATIVE LOAD	
$\begin{gathered} \hline \text { SPECIMEN } \\ \# \\ \hline \end{gathered}$	Location	Measured \% Recovery	Allowable \% Recovery	Measured \% Recovery	Allowable \% Recovery
7	Geometric Center of Panel	90.00	80.00	100.00	80.00
8		85.71	80.00	85.29	80.00
9		100.00	80.00	82.14	80.00
10		92.31	80.00	90.00	80.00
11		88.89	80.00	93.33	80.00
12		87.50	80.00	88.88	80.00

17.4 REMARKS:

This sample was inspected carefully upon completion of the cyclic test for failures. None were found. As such, this specimen was found to satisfy the cyclic test requirements of ASTM E1886-97/1996-02.

MISCELLANEOUS INFORMATION

18.0 CERTIFICATION \& DISCLAIMER STATEMENT:

All tests performed on this test specimen were conducted in accordance with the specifications of the applicable codes, standards \& test methods listed below by the Hurricane Test Laboratory, LLC located at 6655 Garden Road, Riviera Beach, FL 33404. HTL does not have, nor does it intend to acquire or will it acquire, a financial interest in any company manufacturing or distributing products tested at HTL. HTL is not owned, operated or controlled by any company manufacturing or distributing products it tests. This report is only intended for the use of the entity named in section 1.0 of this report. Detailed assembly drawings showing wall thickness of all members, corner construction and hardware applications are on file and have been compared to the test specimen submitted. A copy of this test report along with representative sections of the test specimen will be retained at HTL for a period of three (3) years. All results obtained apply only to the specimen tested and they do indicate compliance with the performance requirements of the test methods and specifications listed in the following section.

19.0 APPLICABLE CODES, STANDARDS \& TEST METHODS:
 ASTM E1886-97 - Standard Test Method for Performance of Exterior Windows, Curtain Walls, Doors and Storm Shutters Impacted by Missiles and Exposed to Cyclic Pressure Differentials. ASTM E1996-02 - Standard Specification for Performance of Exteriot Whitlls, G/azed Curtain Walls, Doors, and Storm Shutters Impacted by Windborne Debris in

4/29/05
Vinu J. Abraham, P.E. FL Reg. \# 53820
20.0 LIST OF OFFICIAL OBSERVERS:

Vinu J. Abraham - HTL, Professional Engineer Urmilla Jokhu-Sowell - HTL, Professional Engineer Dylan O'Berry - HTL, Technician
Fred Ciavola - HTL, Technician
Scott Kuntz - Transparent Protection System, Inc

GUMR0 POLYCARBONATE STORM PANELS (Non-нvHz)

ANCHOR SCHEDULE

NO TOP/BOTTOM CLOSURES

$\begin{aligned} & 5 \\ & \stackrel{y}{2} \\ & \sum_{0}^{\prime} \\ & 0 \\ & 0 \\ & \hline \end{aligned}$	DIRECT MOUNT	$53^{\prime \prime}$	$32^{\prime \prime}$	$55^{\prime \prime}$	$32^{\prime \prime}$	$32^{\prime \prime}$	$53^{\prime \prime}$	$30^{\prime \prime}$	$32^{\prime \prime}$
	STUD ANGLE (WALL MOUNT)	$32^{\prime \prime}$	$30^{\prime \prime}$	$33^{\prime \prime}$	30"	$30^{\prime \prime}$	32"	$30^{\prime \prime}$	
	'F" TRACK	$55^{\prime \prime}$	$33^{\prime \prime}$	57"	$33^{\prime \prime}$	33"	55	$30^{\prime \prime}$	$33^{\prime \prime}$
	REVERSE "F" ANGLE	$32^{\prime \prime}$	30"	33"	30^{\prime}	30"	32	$30^{\prime \prime}$	30"
	B.O. $2 \times 5+$ STUD ANGLE	$32^{\prime \prime}$	30"	33"	$30^{\prime \prime}$	30"	32	$30^{\prime \prime}$	30'
	B.O. "F" TRACK	$53^{\prime \prime}$	$32^{\prime \prime}$	$55^{\prime \prime}$	32	$32^{\prime \prime}$	$5{ }^{\prime \prime}$	$30^{\prime \prime}$	$3{ }^{\prime \prime}$
	"H" HEADER	$30^{\prime \prime}$	30"	$3{ }^{\prime \prime}$	30"	30"	30	$30^{\prime \prime}$	$30^{\prime \prime}$
	STUD ANGLE (TRAP MOUNT)	$32^{\prime \prime}$	30"	33"	30"	$30^{\prime \prime}$	32	30"	

MINIMUM SPAN SCHEDULE
ONE (1) CLOSURE A
TOP OR BOTTOM

	DIRECT MOUNT
	D ANGLE (WALL MOUNT)
-	"F" TRACK
	REVERSE "F" ANGLE
\bigcirc	B.O. $2 \times 5+$ STUD ANGLE
	B.O. "F" TRAC
	"H" HEA
	STUD ANGLE (TRAP MOUN

MINIMUM SPAN
SCHEDULE

ANCHOR SCHEDULE NOTES:

1. 1/4" TAPCONS MAY BE BY TWW OR BY ELCO. "ELCO PANELMATE" ANCHORS MAY BE MALE, FEMALE, OR PANELMATE PLUS,
WASHERED $5 / 8$ I HEX HEAD.
2. ENSURE MINIMUM 2" EDGE DISTANCE FOR ALL ANCHORS TO CONCRETE \& TO HOLLOW BLOCK. EDGE DISTANCE OF $3 / 4$
IS MINIMUM EMBEDMENT SHALL BE AS NOTED IN ANCHOR SCHEDULE. MINIMUM EMBEDMENT AND EDGE DISTANCE
EXCLUDES TUC EXCLUDES STUCCO FOAM, BRICK, AND OTHER WAL FINISHES,
3. ANCHORS SHALL BE INSTALED IN ACCORDANC WITH 4. ANCHORS SHALL BE INSTALLED I
MANUFACTURERS' RECOMMENDATIONS 5. WHERE EXISTING STRUCTURE IS WOOD FRAMING,
EXITTING CONDITONS MAY VARY FIIS EASTENERS ARE INTO ADEQUATE WOOD FRAMING MEMBERS, NOT INTO PLYWOOD.
4. WHERE ANCHORS FASTEN TO NARROW FACE OF STUD FRAMING, ANCHOR SHALL BE LOCATED IN CENTER OF NOMINAL ACCEPTABLE FOR ANCHORS TO WOOD FRAMING). WOOD STUD SHALL BE "SOUTHERN PINE" G=0.55 OR GREATER DENSTTY. 7. ANCHOR SCHEDULE APPLIES FOR ALL PRODUCTS CERTIFIED
HEREIN, BUT ONLY PROVIDES MAXIMUM ALLOWABLE ANCHOR SRACIIG. MAXIMMM ALLOWABLE SPANS AND PRESSURES
INDICATED IN SPAN SCHDUEE SAL APPLY INDICATED IN SPAN SCHEDULE SHALL APPLY. 8. MACHINE SCREWS SHALL HAVE MINIMUM OF $1 / 2 "$
ENGAGEMENT OF THREADS IN BASE ANCHOR AND MAY HAVE ENGAGEMENT OF THEADS IN BASE ANCHOR AND MAY
ETHER A PAN HEAD, TRUSS HEAD, OR WAFER HEAD
5. $*$ DESIGNATES REMAVABLE ANCHORS. PANELS SHALL BE MOUNTED DIRECTLY TO THE HOST STRUCTURE ONLY WITH
THESE ANCHORS, LOCATED AT KEYHOLES AND LESS THAN OR THESE ANCHORS, LOCATED AT KEYHOLES AND LESS THAN OR
EQUAL TO ALLOWABLE SPACING SHOWN IN ANCHOR SCHEDULE.

MINIMUM SPAN SCHEDULE NOTES: 1. SPANS SHOWN ABOVE ARE
MINIMUM ALLOWABLE SPANS BASED ON ANY COMBINATION OF MOUNTING CONDITIONS AT TOP OR BOTTOM. PANEL LENGTHS LESS THAN THOSE
NOTED IN TABLES ABOVE ARE NOT ACCEPTABLE.
2. NO SEPARATION FROM GLASS IS
REQUIRED WHEN PANEL LENGTH IS REQUIRED WHEN PANEL LENGTH IS
GREATER THAN THAT NOTED FOR RESPECTIVE MOUNTING COMBINATIONS ABOVE.
3. SIDE CLOSURES REQUIRED IF GA ETWEEN PANEL AND STRUCTUR
XCEEDS DISTANCE SHOWN IN HORIZONTAL SECTION DETAILS 4. TABLES ABOVE ARE VALD.
PANERS
PIS MOUNTED HORIZOTALIY OR VERTICALLY. 5. TOP/BOTROM CLOSURES MAY $0.018^{\prime \prime}$ MIN) GALV SFEL OR $0.022^{\prime \prime}$ MIN SHEET ALUMINUM OF ALLOY 5052-H3 HEREIN FOR DEPICTION OF TOP/BOTTOM
CLOSURE MOUNTING REQUTREMENTS.

1	TOP/BOTTOM CLOSURE
3	$3^{n}=1^{\prime}-0^{n}$
VERT SECTION	

$10 / 25 / 2004$ 12

03-155-1343b PAGE SCALE:

3

